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ABSTRACT

Artificial intelligence (Al) can be used to improve surgical services at all stages, pre-
operative, intra-operative, and post-operative. In the pre-operative stage, Al can be used to
detect a disease, classify diseases, segment the results of radiological examinations,
facilitate the process of registering patient data, provide advice in decision-making, and
provide prognosis predictions for the results of surgical procedures to be performed. At the
intra-operative stage, Al can be used to generate 3D reconstructions during the surgical
process, improve navigation capabilities during endoscopic procedures, provide tissue
tracking features, enable the use of augmented reality during surgery, and improve the
efficiency of surgical robots in minimally invasive surgeries. In the postoperative stage, the
use of Al can mainly be used in the automated processing of electronic health records data.
Key words: artificial intelligence, surgery, computer vision

INTRODUCTION

The concept of Artificial Intelligence (Al) originated from the research
conducted by Alan Turing, although John McCarthy was the first to coin this
term during the Dartmouth Summer Research Project in 1956 (1). Artificial
Intelligence is the outcome of merging numerical computations with computer
assistance to generate intelligence. Authors often argue that Al generates
computer-generated simulations with three main objectives: analysis, compre-
hension, and prediction (2). Another definition characterises Al as machines that
operate in a proactive and suitable manner (3). Taking these definitions into
account, it is fair to say that Al refers to the utilisation of a computer to analyse
data, make decisions, or aid in completing tasks.

The word Al has grown difficult as it supplants technical expressions such as
machine learning. Al is an expansive classification that encompasses subfields
such as machine learning, which involves methods like neural networks and
deep learning. Fig. 1 depicts an Al taxonomy that elucidates the connections
between various subjects. The various subfields mentioned are interconnected,
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Figure 1 - Basic terminology in Al. Al — artificial intelligence;
ML - machine learning; DL - deep learning;
CN - convulational neural network; CV - commputer vision

and depending on the specific use case, techniques
from one subfield can be merged with or incorporated
into another (4).

Classification of Al

Machine learning

Machine learning (ML) is the field of research
that focuses on developing and utilising statistical
models and techniques to enable machines to acquire
knowledge and perform tasks. Machine learning
methods utilise inherent qualities or attributes within
the data to perform tasks, without the need for explicit
programming. Typically, these tasks are divided into
two distinct categories: those that involve regression
(i.e., creating a model to understand the relationship
between continuous variables) and those that include
classification (i.e., dividing data into different groups). In
conventional machine learning, human attributes are
manually selected or generated to guide the algorithms
in evaluating specific aspects of the data during analysis.
On the other hand, neural networks automatically
extract traits, which will be explored later (4).

Supervised and unsupervised learning are the
primary modalities of machine learning. Supervised
learning is training an algorithm to make predictions
based on a specified output. This process necessitates
the use of labelled data sets that are divided into
training and test sets for evaluation (5). On the other
hand, unsupervised learning includes identifying
patterns in data that does not have any predetermined
annotations. It has the capability to discern connections
between groups, such as clustering, and produce
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hypotheses for subsequent research. This can be
applied to more specific data sets, such as surgical
motion and activity, as well as to more general
surgical data, such as patient outcomes databases.
Unsupervised learning has been utilised, for example,
to automatically detect suturing movements in surgical
recordings and to identify patients undergoing heart
surgery with a high risk of complications (6,7).

Reinforcement Learning (RL) is an unsupervised
learning method that belongs to the third category of
learning. It can be likened to operant conditioning,
where the model learns by repeatedly attempting
different actions, with rewards and punishments
influencing the model's behaviour to maximise rewards
(5,8).

Artificial neural networks

In traditional machine learning, features, also
known as variables, are manually chosen by an
individual to optimise performance for a certain task.
Whiskers and pointy ears might be regarded as meticu-
lously designed characteristics in a task of recognising a
cat. Neural networks, drawing inspiration from organic
nervous systems, employ layers of fundamental
computer units designed to mimic neurones for the
purpose of analysing input (fig. 2). Unlike standard
machine learning, neural networks have the ability to
extract features from data and utilise them as inputs.
Subsequently, the system can adjust the weights of the
features to be utilised within an activation function,
thereby generating an output (9). In essence, the
system autonomously alters the weights to enhance or
diminish connections within the network, aiming to
achieve optimal results through predetermined
mathematical algorithms.

Deep learning

Deep neural networks are neural networks with
three or more layers, allowing them to learn complex

Hidden

Figure 2 - Three-layer of neural network
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patterns that cannot be observed in simple one- or
two-layer networks. Like traditional neural networks,
deep learning selects features based on their probability
of yielding the highest results. This approach is highly
efficient for handling unorganised data, such as images,
videos, and audio. In a deep neural network, each layer
performs a set of operations to generate a representa-
tion of the input, which is then passed on to the next
layer (10). Increased depth in network layers results in
the creation of more abstract data representations,
even while it enhances the distinction of data
classes (11). Currently, convolutional neural networks,
recurrent neural networks, and residual neural
networks are commonly employed deep learning
architectures in surgical applications.

Applications of Artificial Intelligence

The previously stated methods have demonstrated
significant potential in diverse domains of artificial
intelligence. Natural language processing and computer
vision have gained significant popularity in the field of
medicine, especially in surgery.

Computer vision

Computer Vision (CV) is a branch of artificial
intelligence that focuses on the analysis and under-
standing of images and videos using machine learning
techniques (5). It involves various processes such as
image processing, pattern recognition, and signal
processing (fig. 3; it is important to highlight that
although CV does not encompass reinforcement
learning, this is just a situation where the two fields
overlap). It involves a system that integrates data from
the individual pixels of an image, detects objects in the
image, and potentially examines the empty spaces
inside the image. By combining these components, it is
possible to construct advanced applications, such as
autonomous driving systems that utilise computers to
identify items such as traffic signals, pedestrians, and
open roadways. Convolutional neural networks (CNNs)
have also demonstrated significant advantages for CV
tasks (4).

With the increasing availability of visual surgical
data, the field of CV is finding more and more applica-
tions in surgery. With the increasing user-friendliness of
laparoscopic, endoscopic, and robotic camera systems,
as well as the decreasing cost and bigger storage
capacity, an increasing number of surgeons are
choosing to document their procedures for the sake of
research, teaching, and education (4).
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Natural language processing

Natural Language Processing (NLP) involves not
only the identification of vocabulary, but also the
development of machines that can understand human
language. This entails comprehending synonyms,
antonymes, definitions, and other interconnected facets
of language. In the absence of NLP, computers are
limited to interpreting machine languages or code (such
as C, Java, and Visual Basic) and executing instructions
that have been explicitly written and compiled into an
output. NLP enables machines to have a basic under-
standing of human language as it is commonly utilised
in everyday situations. The goal is to understand
the structure and meaning of phrases, sentences, or
paragraphs by focusing on syntax and semantics (12).

NLP is employed for the analysis of electronic
medical records and the completion of dictation duties
performed by healthcare personnel. The capability of
NLP to analyse specific types of human language allows
for the automatic evaluation and organisation of
unstructured free text, such as radiology reports,
progress reports, and operation notes. For example,
sentiment analysis in patient notes can be utilised to
anticipate a patient's health condition, while record
analysis can be employed to forecast the probability of
cancer in a patient (4).

Artificial Intelligence in preoperative

Detection

Regions of interest are identified and located in
space through the process of detection, which may also
include classifying the regions or the entire image.
Regions of interest are commonly depicted using
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bounding boxes or landmarks. Similarly, techniques
utilising deep learning have shown promise in detecting
various anomalies or medical conditions. Regression
layers are employed to determine the parameters of
the bounding box, whereas convolutional layers are
commonly utilised in Deep Convolutional Neural
Network (DCNN) for the purpose of detection (13).

A deep convolutional autoencoder was trained on
4D positron-emission tomography pictures to extract
both statistical and biological information. The training
aimed to detect prostate cancer by analysing the
data extracted from the images (14). In the case of
diagnosing pulmonary nodules, it was recommended
to use a 3D CNN with roto-translation group convolu-
tions (15). The device has excellent sensitivity, accuracy,
and convergence speed.

The utilisation of dynamic contrast-enhanced MRI
was employed to formulate a search policy with the
objective of finding breast lesions. The deep Q-network
was expanded, and subsequently, Deep Reinforcement
Learning (DRL) was utilised to acquire knowledge of the
search policy (16). Lee et al. utilised an attention map
and an iterative process to imitate the workflow of
radiologists, aiming to detect acute cerebral bleeding
from CT scans and improve the interpretability of the
network (17).

Classification

The input, comprising one or more medical
pictures or volumes of organs/lesions, undergoes
classification to ascertain its diagnostic significance.
Deep learning-based approaches are becoming
increasingly popular, alongside standard machine
learning and image analysis techniques (18). These
systems utilise convolutional layers to extract input
information and fully connected layers to determine
the diagnostic value.

An example of a classification pipeline was presented
to segment bladder, breast, and lung tumours using
Google's Inception and ResNet architecture (19,20).
Chilam Kurthy et al. showed that deep learning can
identify cerebral haemorrhage, midline displacement,
calvarial fracture, and mass effect from head CT scans.
Recurrent neural networks (RNNs) are more precise in
predicting postoperative haemorrhage, death, and
renal failure in patients receiving cardiosurgical care
compared to standard clinical methods. This prediction
is done in real time (21). ResNet-50 and Darknet-19,
which have similar sensitivity but improved specificity,
are used to detect whether tumours in ultrasound
images are benign or malignant (22).
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Segmentation

Segmentation categorizes pixels or voxels in an
image. Previously, computation required dividing
images into smaller panes. CNNs predicted the target
label at each window's center. Many windows were fed
into the Convolutional Neural Network to partition an
image or voxel. DeepMedic identified and separated
brain tumors from MRI scans well (23). Due to ongoing
network function computation in areas with several
overlapping windows, sliding window-based methods
are wasteful. Fully Convolutional Networks succeeded
it. By replacing fully connected layers with convolutional
and upsampling layers in a classification network, FCNs
improve segmentation efficiency (24). U-Net and other
encoder-decoder networks have shown promising
medical image segmentation outcomes (25,26). These
encoders use many convolutional and downsampling
layers to extract visual data at different sizes. The
decoder's convolutional and upsampling layers recover
feature map spatial resolution to segment pixels and
voxels accurately. Zhou and Yang analyze numerous
normalization methods used to train U-Net models for
medical picture segmentation (27).

Registration

Registration refers to the process of spatially
aligning two medical volumes, modalities, or images. It
is particularly essential for organising both the pre- and
intraoperative operations. Historically, medical image
registration algorithms have typically relied on iterative
optimisation of a parametric transformation in order to
minimise a given measure. Deep regression models are
supplanting optimization-based registration processes,
such as mean square error or normalised cross-
correlation, in order to provide quicker and more
effective processing of medical input (13).

Decision aids

Decision aids include background data, diagnosis
and treatment alternatives, pros and cons, and
prediction of outcomes for specific patient populations.
A systematic analysis of 31,043 patients who had to
make screening or treatment decisions indicated that
decision aids improved informed and active participa-
tion (28). A comprehensive study of 17 surgical patient
trials found that decision aids boosted treatment
awareness and desire for less invasive procedures.
Death, morbidity, quality of life, and anxiety were not
significantly different (29). Decision aids are created for
different patient groups with a single clinical presenta-
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tion or option, hence they do not account for individual
patients' physiology and risk factors.

Prognostic scoring systems

Prognostic scoring systems utilise regression
modelling to analyse data from patient groups in
order to identify risk factors for individual patients.
An elevation in the concentration of C-reactive
protein (CRP) in the bloodstream following colo-
rectal surgery is associated with the occurrence of
anastomotic leak. Based on a meta-analysis, the
optimal cutoff value for C-reactive protein (CRP) on
the third day following surgery is determined to be
172 mg/L (30). Nevertheless, this technique lacks
complete accuracy as it fails to reflect the underlying
pathology. C-reactive protein (CRP) levels vary along
a range and are directly linked to the presence of
inflammation, with a reasonably stable period of
time it takes for the levels to decrease by half.
Following a colectomy, medical experts utilise CRP
levels as a means of identifying any potential issues.
However, the diagnosis of a problem does not rely on
the CRP levels being above or below the 172 mg/L
criterion (31). A CRP level below the cutoff often
indicates the absence of problems, with a negative
predictive value of 97%. Nevertheless, the positive
predictive value is at a mere 21%, suggesting that a
high CRP level does not definitively indicate a post-
operative problem (32-34).

Prognostication scoring systems may involve a
wide range of criteria. These systems are used to
forecast stroke and serious gastrointestinal bleeding,
as well as to assess the severity of an illness. The
reason for this is that most diseases are not
attributed to a single physiological factor (32-34).
Regression analysis, which is used in prognostic
scoring systems, assumes linear relationships
between input variables (35,36). However, in cases of
non-linear relationships, the scoring system becomes
as unpredictable as flipping a coin (37).

Prognostic scoring systems have been integrated
as digital tools to calculate risk and assist with clinical
application. An example of a widely recognised tool is
the NQIPSurgical Risk Calculator. The utilisation of
calculators may increase the likelihood of patients
adopting risk-reduction strategies such as prehabilita-
tion. However, further development is necessary as
the input variables need to be manually provided and
the predicted accuracy is suboptimal, especially for
non-elective procedures.
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Artificial Intelligence in intraoperative
Instantiating 3D shapes

3D reconstruction can be performed using MRI, CT,
or ultrasound imaging during surgery. An application
can be utilised to generate a three-dimensional surgical
environment in real-time, hence diminishing the
quantity of photographs required for three-dimensional
reconstruction. In addition, improved techniques can
boost the clarity of the reconstruction even further. A
developing area of research involves generating a
real-time representation of a 3D shape during surgery
using only one or a few 2D images (13).

For instance, a 3D prostate shape was constructed
by utilising a radial basis function and multiple non-
parallel 2D ultrasound images (38). Similarly, the 3D
shapes of stent grafts in different states (fully deployed,
fully compressed, and partially deployed) were
generated through mathematical modelling, a reliable
perspective-n-point approach, graft gap interpolation,
and graph neural networks (39-41). These shapes were
created from a single 2D fluoroscopy projection using a
technique called instantiation (42). To improve the
efficiency of the framework used to create the shapes
and automatically segment markers on stent grafts, a
focused U-Net with equal weighting was proposed. A
3D model of an Abdominal Aortic Aneurysm (AAA)
was created using skeleton deformation and graph
matching techniques with only one 2D fluoroscopy
projection (43). Three mathematical techniques,
Principal Component Analysis (PCA), Statistical Shape
Model (SSM), and Partial Least Square Regression
(PLSR), were used to create a 3D shape of a liver from a
single 2D projection (44). A framework for shape
instantiation without registration was developed and
expanded to include sparse PCA, SSM, and kernel PLSR
(45). A new technique using deep and one-stage
learning has been developed to create 3D shapes. This
method enables the creation of a three-dimensional
point cloud using only one two-dimensional image (46).

Endoscopic navigation

The prevailing direction in surgery is increasingly
shifting towards endoscopic and intraluminal procedures
that depend on prompt identification and intervention.
An evaluation has been conducted on the capacity of
navigation systems to guide the movement of endos-
copes towards particular locations. Depth estimation,
visual odometry, and Simultaneous Localisation and
Mapping (SLAM) techniques have been specifically
designed to enable camera localisation and environ-
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ment mapping using endoscopic images (13).

Accurate depth estimation from endoscopic
pictures is essential for mapping the 3D structural
environment and estimating the 6 degrees of freedom
camera movements. This has been achieved through
the use of self-supervised or supervised deep learning
techniques (47-50).

Visual odometry is a process that determines the
position and orientation of a camera that is in motion
by analysing a sequence of video frames. CNN-based
algorithms were employed for camera pose estimation,
utilising temporal information. The evaluation of visual
odometry-based localisation techniques was limited to
lung phantom and Gl tract data (51,52).

Navigation requires real-time 3D reconstruction and
localization of surrounding tissue due to tissue
dynamics. Simultaneous Localisation and Mapping
(SLAM) is a well-studied robotics approach. Using
Simultaneous Localization and Mapping (SLAM), the
robot can properly locate the camera on its map.
Additionally, it can create a three-dimensional image of
its surroundings. Traditional SLAM approaches assume
a rigid environment, which is not true in a surgical
setting where soft tissues and organs may flex. Thus,
the misconception limits the use of this technology in
surgery. Mountney et al. examined how breathing-
induced soft tissue movement affects SLAM estimate
using a stereoendoscope and EKF-SLAM (53).
Monocular EKF-SLAM was used to assess hernia
anomalies during hernia repair surgery by Grasa et al
(54). Turan et al. calculated RGB depth images using
form from shading. Later, they developed RGB D SLAM
employing RGB and depth images (55). Song et al.
developed a CPU-based ORB SLAM and a GPU-based
dense deformable SLAM to improve stereoendoscope
localization and mapping (56).

Tissue feature tracking

Minimal Invasive Surgery uses learning methods for
soft tissue monitoring. Mountney and Yang created an
online learning system that uses decision tree catego-
rization to pinpoint relevant traits (57). The feature
tracker is updated over time using this method. Ye et al.
identified and focused on Gl soft tissue surfaces. They
used an online random forest and a structured SVM for
this (58). Wang et al. used a statistical appearance
model in their region-based 3D tracking system to
differentiate organs from background (59). The valida-
tion findings revealed that learning algorithms can
improve tissue tracking robustness to deformations and
illumination changes.
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Augmented reality

Augmented Reality (AR) overlays a partially trans-
parent preoperative image onto the focal area to
improve surgeon vision (60). Wang et al. used a
projector to display the AR overlay during oral and
maxillofacial surgery, according to their article (61). To
align the virtual image and teeth, 3D contour matching
was used. Instead of projectors, Pratt et al. used
Hololens to display a 3D vascular model on patients'
lower limbs (62). For AR navigation, Zhang et al. devised
a framework that automatically registers 3D
deformable tissue. They did this using Iterative Closest
Point and Random Sample Consensus (63). Projecting
the overlay over markerless deformable organs is
tough, therefore this was crucial.

Robotics

Artificial intelligence has enhanced the efficiency of
surgical robots in Minimally Invasive Surgeries (MIS).
The objective is to enhance their perception, decision-
making, and focused activities (63,64). The primary
areas of emphasis for Al techniques in Robotic and
Autonomous Systems (RAS) include perception,
localisation and mapping, system modelling and
control, and human-robot interaction.

Artificial Intelligence in the postoperative
period

Automated electronic health records data

The Health Information Technology for Economic
and Clinical Health Act of 2009 promoted the adoption
of Electronic Health Records (EHR) systems (65). Within
a span of less than 6 years, over 80% of US hospitals
successfully implemented EHRs (66). These systems
generate a substantial volume of data, which is
expected to continue increasing in the future. In 2013,
around 153 billion gigabytes (GB) of data were generated,
and it is projected to expand annually by 48% (67). This
large amount of data is ideal for artificial intelligence
models that are designed to handle big datasets.

Artificial intelligence models possess the capability
to generate real-time forecasts and suggestions due to
the automatic updating of Electronic Health Records
(EHRs) when fresh patient data is accessible. Recent
publications demonstrate the viability of this approach.
The MySurgeryRisk platform utilises EHR data on 285
variables to forecast 8 potential complications after
surgery. The platform achieves an area under the
curve (AUC) ranging from 0.82 to 0.94 for these
complications. Additionally, it predicts the likelihood of
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mortality after 24, 36, and 1 year with an AUC ranging
from 0.77 to 0.83. The programme receives data from
electronic health records automatically, eliminating the
requirement for human data entry and search. This
removes a significant obstacle to clinical application. In
a prospective study, the system demonstrated superior
accuracy in identifying postoperative difficulties
compared to doctors (68).

CONCLUSION

Al is the outcome of merging numerical operations
with computer aid to generate intelligence. Al can be
considered as a broader umbrella term that encom-
passes subfields such as machine learning, which in
turn includes techniques like neural networks and deep
learning. Natural language processing and computer
vision are widely utilised in the field of medicine, with
a particular emphasis on their application in surgical
procedures. Al can assist in preoperative, intra-
operative, and postoperative stages of surgery. Al can
assist in preoperative procedures by aiding in the
diagnosis and facilitating surgical decision-making.
During surgery, Al may assist us in several ways,
including creating three-dimensional (3D) models of
shapes, guiding endoscopic navigation, tracking tissue
features, implementing augmented reality (AR), and
controlling robotic systems. Artificial intelligence can be
utilised to automate electronic health records in the
postoperative setting. Although Al developments have
made it possible to provide surgical assistance, there
are some challenges that must be solved from a
practical perspective. It is necessary to redevelop data
availability, data annotation, data standardisation,
technical infrastructure, interpretability, safety,
monitoring, ethics, and legal considerations. As a result,
surgeons must be prepared to not only embrace this
transformation but also actively participate in its
development and implementation.
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